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FOREWORD

This report was prepared by the Radiation Studies Section of the Radiation Branch. The
work was Initiated under Project No. 7367, "Research on Characterization and Properties
of Materials," Task No. 736701, "Fundamental Interactions of Nuclear Radiations with
Matter," and administered under the direction of the Directorate of Materials and Pro-
cesses, Deputy for Technology, Aeronautical Systems Division. Mr. Roger E. Rondeau
was the project engineer.

This report covers work conducted from March to December 1962.
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ABSTRACT

Pyrex ampoules of gaseous 2-butyne (dimethylacetylene) were exposed to cobalt-60
gamma rays, and the hundred electron-volt yields of the lower molecular weight products
are given. The radiation induced products were studied as a function of sample pressure
and total dose. The products, which Include hydrogen, methane, acetylene, propene, pro-
pyne, cis- and' trans- 2-butene, butane, 1,2-butadiene, and vinylacetylene, are explained
on the basis of ion-molecule and free radical reactions. Some mechanisms of product
formation which are consistent with product distribution and magnitude of the yields are
discussed.

This technical documentary report has been reviewed and is approved.

4H• D 6.LER, Capt, USAF
Chief, Radiation Branch
Physics Laboratory
Directorate of Materials and Processes
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INTRODUCTION

The radiation polymerization of acetylene to form cuprene and benzene is one of the
earliest hydrocarbon reactions studies (refs 1,2,3). However, except for acetylene, little
or no data can be found in the literature relating to the radiolysis of triple-bonded com-
pounds. The stability or sensitivity of the heavier members of the acetylenic series has
yet to be established (refs 4,5); even related data on the radiolysis of double-bonded com-
pounds is largely confined to polymerization. The lack of knowledge of the radiation chem-
istry of this important class of compounds constitutes a serious deficiency in our ability
to predict the radiation behavior of potentially useful materials.

This study is the first in a series of investigations of radiation chemistry of triple
bonds. Some of the compounds to be examined include the alkyl cyanides, 1-alkynes.
2-alkynes, and some alkadiynes; see figure 1. These compoundls permit convenient
variation of molecular structure and a detailed study of eacn sh,,uld yield valuable infor-
mation concerning the extent of the influence of the triple bond alrag the hydrocarbon
chain. Also, in each of the above compounds, the triple bond should readily undergo
observable reactions and should serve as an indicator for the radiation sensitivity of the
molecule.

At least three compounds from each homologous series will be studied in the gas phase
and where possible in the liquid phase. The nitrile group includes aceto-, propio-, and
butyronitrile; the 1-alkyne group takes in propyne, 1-butyne and 1-pentyne; while
2-butyne, 2-pentyne, and 2-hexyne make up the 2-alkynes.

In this investigation, the radiation induced products of gaseous 2-butyne are studied as
a function of sample pressure and total dose. This particular compound was selected as
a starting point for several reasons: the material Is liquid between -320 and 27"C, and
hence can be easily handled in a vacuum system; the symmetry of the molecule tends
to keep the number of products down to a practical number; while, the internal location of
the unsaturation in the molecule militates against the formation of free radical polymeri-
zation.

The main disadvantage of working with these particular systems is that no information
can be drawn from existing literature data and therefore intercomparison of our results
or extension of any theoretical treatment cannot be performed. Nevertheless, the results
from all this work should give a clear picture of the radiation behavior of two heretofore
ignored, but very important classes of compounds.

Manuscript released by the authors 4 January 1963 for publication as an ASD Technical

Documentary Report.
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EXPERIMENTAL PROCEDURES

Materials

The 2-butyne was obtained from Farchan Research Laboratories and was purified further
by vacuum distillation through a cooled (-95*C) silica gel column. The resulting material
contained a maximum impurity level of 0.01 mole percent.

Target Preparation

The purified 2-butyne was vacuum distilled into cylindrical glass ampoules equipped
with break-seals whose volumes had been previously determined. The sample pressure
was varied between 25 and 200 mm of mercury. When the ampoules were filled to the
desired pressure, they were cooled with liquid nitrogea, degassed, and sealed under a
vacuum of less than 10-' Torr (mm. Hg).

Irradiations

The gases were irradiated for periods of 16 to 72 hours in a 1500 curie cobalt-60
source of gamma rays. The source is pictured in figure 2. All radiations were made at
room temperature. At these exposure times the total conversion was kept below 0.5 percent,
thereby minimizing complicating product irradiation effects.

Dosimetry

The energy absorbed in the 2-butyne was determined through the use of an acetylene
dosimeter. It has been shown (ref 6) that in the radiolysis of acetylene gas, polymeriza-
tion to cuprene and cyclization to benzene account for all the reacted acetylene. The
rate of consumption of acetylene has been measured at 0.72 molecules per electron volt
of energy absorbed and is linear over a wide range of total dose and pressure. This reac-
tion has been used to measure the energy absorbed in the 2-butyne.

The acetylene was purified by trap to trap vacuum discillations using a toluene/liquid
nitrogen (-95"C) slush bath at each trap. The purification step was immediately followed
by liquid nitrogen pumping into the pyrex ampoule. The gas pressure and geometry used
in the dosimeter experiments were identical to those used in the radiolysis experiments.
The decrease of acetylene pressure after exposure was determined by attaching the
ampoule to a vacuum line and measuring the acetylene pressure and ampoule volume.

Having found the dose rate in electron-volts per gram of acetylene per hour, the dose
rate in 2-butyne was obtained from the following equation:

DC4H4/ DC2 H2 EC4H./ ECH2

where E is the electron density of the material in electrons per molecule. For 2-butyne
E - 0.555, while EC% N = 0.538. Since D C6 was determined to be 1.60 ev/g - hr, then

0.55'

D 0.555 X 1.60 1.65 ev/g-hr
2CH. 0.538

2
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ANALYSIS

The irradiated ampoule was attached to a calibrated trap which in turn was attached to
the inlet system of a time of flight mass spectrometer. After evacuating the entire system
and cooling the trap with liquid nitrogen, the ampoule break seal was opened and a portion
of the gas sample was admitted into the mass spectrometer. Hydrogen and methane were
analyzed with this portion of the sample. The remaining gas sample was collected in the
trap, and subsequently introduced into a gas chromatograph equipped with a six-foot
column of di-n-butyl maleate. The remaining products were measured quantitatively in
this way. The unknown products were identified by connecting the exhaust line of the
chromatograph to the mass spectrometer.

RESULTS AND INTERPRETATION

The products formed from the gamma radiolysis of 2-butyne gas are shown in table 1.
The yields are expressed in terms of "G" values or the number of molecules formed per
one hundred electron-volts absorbed. All yields were extrapolated to zero dose to elimi-
nate the effects of secondary processes. Figure 3 is a plot showing the linearity of pro-
duct yield with dose over the doses used in this study.

To interpret the results of these experiments in terms of the radiolysis mechanisms
leading to the formation of these observed products, let us review the elementary pro-
cesses to be expected in the system under consideration.

If the reasonable assumption is made that the effective radiation in the glass ampoule
consists primarily of secondary electrons ejected from the walls of the ampoule, which is
certainly tiue at the lower gas pressures used, then it can be shown that these electrons
are rapidly degraded in energy by collision with target molecules and finally captured
either by the walls of the ampoule or by positive ions produced during a high energy
collision. The reactive, excited species, formed by high energy electron impact, react
with unchanged target molecules, other excited species, and low energy electrons to form
the final products. If this sequence of events truly represents the radiolysis process, then
the final products may be deduced by considering the excited or ionic species observed
in the electron impact mass spectra of 2-butyne. Since the electrons ejected from the
ampoule wall may have energies as high as 1.2 Mev and through collision may be degraded
to the order of 1 volt before capture, an average energy mass spectrum should be used to
evaluate the primary radiolysis. For this purpose, the mass spectra at 30 and 3000 ev
were examined to indicate the most probable species formed. At both bombarding electron
energies, mass peaks at 54, 53, and 39 mass units were highest in intensity indicating the
following most prevalent reactions:

CH3 - C a C - CH3 - C4 H** + e

CH3 - C.a C- CHM P C*He* + H + a

CMH - C = C- CH3 -- C,3HM -+ CH3+ e

3
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Reactions of minor importance include:

CH3 - C C- CH3 0 C2H3 ÷ + (C2 H3) + e

CH3 - CE C- CHM -3 C4 H4
4 + (H 2 or H + H+) + e

Some of the ions formed by electron impact will have considerable excess energy which
may be dissipated by further fragmentations, by radiation, or by collision. The time scale
of these various events is important in predicting their occurrence. Fraginentation will
occur during the time of a single molecular vibration which for a carbon hydrogen bond
is about 10-14 seconds, a carbon carbon triple bond, 1.5 x 10-" seconds, a carbon carbon
double bond, 2 x 10"' seconds, and a carbon carbon single bond, 3 x 10-" seconds. The
time required for a radiative transition is about 108 seconds and for collision (in the
pressure range studied) between 10'9 seconds and 10-8 seconds. Reduction in energy
will then take place by fragmentation to an energy level below which no further fragmen-
tation can occur. Ions and radicals which have internal energies from their ground states
to the energy of dissociation will continue the reactions. The energetically possible
reactions of ionic species in the ,-radiolysis of 2-butyne gas are summarized in tables
2 and 3. Table 4 summarizes the free radical reactions, and table 5 lists the final products
to be expected along with the observations or absence of the postulated products.

Jr those tables, certain reactions are labelled improbable and would not be expected to
occur with high yields in the gas phase. These are reactions of the type: A + B - C. If
a collision occurred between two reactive species A and B and a bond were formed, the
excess energy contained in the complex AB* would be at least the energy required to
cause scission of the bond formed between A and B. For most such reactions there would
be, in addition, the kinetic energy of impact. For AB* to remain in existence, this energy
must be dissipated before a dissociation could take place (in the order of 10.14 to 10-1
second). This excess energy may be dissipated by collision with another molecule or
by collision with the walls of the container. If the mean time between collisions is much
greater than the lifetime of AB* for dissociation, then the reaction A + B - AB* -* C
becomes highly improbable. In some cases, such reactions can occur if no other possibility
for reaction is present. Methane, for instance, in our system is a product of such a reac-
tion. It is likely that the methane, produced from methyl radical hydrogen atom combination,
occurs at the vessel walls where the energy may be quickly dissipated as heat to the wall.
In other reactions where two or more possibilities exist, such as the following:

(I) C 4 H7 "+ C4 H7  - Ce H1 4

(2) C 4 H? + C4 H 7  - C4 H6 + C4 HS

the disproportionation reaction (ref 2) will be favored in the gas phase. With the exception
of ethylene, the observed products coincide with those products considered most probable
in this analysis (table 5). The ethylene may be present but may not be observed in our
analytical scheme because other products may interfere.

4
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The large amount of 2-butene observed in the radiolysis is believed to arise through
the following series of reactions:

C4 H++ C4 HC H C4 HC 4 C4 H7

C4 H 7÷ + C4 H. - C4 H. 4- C.H,÷

C4 H 5 + C4 Ho - C4 H7 + C4 H 4

The last three reactions represent a chain of events which can be summarized in one
reaction:

2C 4 H4  -- C4 H, + C4 H 4

Figure 4 is a pictorial representation of this chain reaction. If we apply the usual steady
state approximation to the above reaction, we arrive at the following expressions for
dependence of butene and vinyl acetylene yields on solvent pressure:

P C4He =KP 2CA

P C4H4 = K P 2 CH

These expressions are consistent with experimental observations.

CONCLUSIONS

This investigation has demonstrated that the room temperature gamma radiolysis of
2-butyne gas can be satisfactorily explained primarily through an ion-molecule reaction
scheme and with some simple calculations that are consistent with accepted concepts of
mass spectrometry and reaction kinetics. The experiment has also shown that this parti-
cular compound is relatively radiation stable and that the polymerization produced is
through a secondary process.

The results emphasize the need to explore low conversion phenomena to obtain a true
picture of the primary processes of the gamma radiolysis. A surprising result is that
the C-C single bonds are not readily ruptured. Table 1 shows that the high yield products
are the C, compounds, thereby indicating that they have skeletal stability.

Although further work is required to firmly establish the radiation behavior of the
-C NC- linkage it is apparent from this study that the inclusion of the acetylenic linkage
in a synthetic material will improve its radiation stability. Furthermore, it may be possible
to protect materials having other desirable properties, but lacking stability towards
ionizing radiations, by synthesizing the analogous compounds with acetylenic bonds at
the sensitive positions.

This experiment has served as an orientation study which points towards a more de-
tailed study of 2-butyne and other compounds in the triple-bond class.

5
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TABLE 5
FINAL PRODUCTS OF RADIOLYSIS

Hg - Observed

CH 4 - Observed

C4 Hs - cis + trans 2 Butenes - Observed

C4 H1 1 ,2 Butodiene - Observed; I Butyne - Observed; 2 Butyne - Observed;
1,3 Butodiene - Not Observed

C4 H4 - Vinyl Acetylene -Observed

CSH4 - Propyne - Allene - Observed

C1H- - Observed

C2H4 - Not Observed

CgH 6 - Observed (Low Pressures)

C4 Ho - Observed

C3 Hs - Not Observed

CsHe - 2,4 Hexadlyne - Not Observed

ClH10- 2,6 Octadiyne - Not Observed

Cellw- 2,6 Octadiyne - Not Observed

Cs - 2,-Pentyne - Not Observed

C7 H1o- 2,5 Heptodiyne - Not Observed

ClH 10- 2-Pentyne - Not Observed

COH 14 - 2,6 Octodlene - Not Observed

C5 Hg - Observed
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4

H H H H H H
Nitrile HC- C =- N HC-C-C = N HC- C - C - C -E N
Seriesa H H H H H H

Acetonitrile Propionltrile Butyronitrile

H H H H H H
I-Alkyne' HC-C--- CH HC- C - C CH HC-C-C-C aCH

SeriesJ H H H H H H

Propyne I- Butyne I- Pentyne

H H H H H H H H H

2-Alkyne) HC -C-C-CH HC-- C - C- C--CH HC-C-C-C S C-C-H

Seriest H H H H H H H H H

2-Butyne 2-Pentyne 2-Hexyne

H H H H H
AlkylDiyne) HC--C-C-C--C -- C CH HCaC--C--C- C--C - CH
Series J H H H H H

1,5 Hexodiyne 1,6 Heptadlyne

Figure 1. Molecule Dictionary
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LOADING PLUG

ALUMINUM CANISTER

SAMPLES TO BE
IRRADIATED-----

__COOLING OR
HEATING COILS

INSULATION

LEAD

STAINLESS STEEL

Co-60 SOURCE PIPE

DRAIN

Figure 2. Sectional View of a Cobalt-60 "Pig"
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C4 H1 *

C4 H* C4~~iL He+

C4 HH5  C4 H6

C4 H4 < C4 H7+

Figure 4. Production of Vinyl Acetylene and 2-Butene Via a Chain Reaction
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